On X-ray scattering model for single particles, Part II: Beyond protein crystallography
نویسنده
چکیده
Emerging coherent X-ray scattering patterns of single-particles have shown dominant morphological signatures in agreement with predictions of the scattering model used for conventional protein crystallography. The key question is if and to what extent these scattering patterns contain volumetric information, and what model can retrieve it. This contribution is Part 2 out of two reports, in which we seek to clarify the assumptions of some different regimes and models of X-ray scattering and their implications for single particle imaging. In Part 1, basic concepts and existing scattering models along with their implications for nanocrystals, and also the misconception of using Diffraction Theory for volumetric scattering were addressed. Here in Part 2, specific challenges ahead of single particle imaging are addressed. Limitations of the conventional scattering model in the test case of a sphere, schemes for improving this common scattering model, ambiguities in meaning and properties of “density map” and non-classical effects, the crucial role of electromagnetic boundary conditions, the uniqueness of X-ray scattering inverse problems, and additional vulnerabilities of phase retrieval and its relation with “resolution” are discussed. We raise concerns about the unverified use of the common scattering model of protein crystallography for arbitrary objects, and also leaving fundamental questions such as meaning/uniqueness/properties of the sought 3D profiles to phase retrieval algorithms. References and Links 1. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342 (1999). 2. S. Kassemeyer, A. Jafarpour, L. Lomb, J. Steinbrener, A.V. Martin, and I. Schlichting “Optimal mapping of xray laser diffraction patterns into three dimensions using routing algorithms,” Phys. Rev. E 88, 042710 (2013). 3. M. M. Seibert, T. Ekeberg, F. R. N. C. Maia, M. Svenda, J. Andreasson, O. Jönsson, D. Odic, B. Iwan, A. Rocker, D. Westphal, M. Hantke, D. P. DePonte, A. Barty, J. Schulz, L. Gumprecht, N. Coppola, A. Aquila, M. Liang, T. A. White, A. Martin, C. Caleman, S. Stern, C. Abergel, V. Seltzer, J. Claverie, C. Bostedt, J. D. Bozek, S. Boutet, A. A. Miahnahri, M. Messerschmidt, J. Krzywinski, G. Williams, K. O. Hodgson, M. J. Bogan, C. Y. Hampton, R. G. Sierra, D. Starodub, I. Andersson, S. Bajt, M. Barthelmess, J. C. H. Spence, P. Fromme, U. Weierstall, R. Kirian, M. Hunter, R. B. Doak, S. Marchesini, S. P. Hau-Riege, M. Frank, R. L. Shoeman, L. Lomb, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, C. Schmidt, L. Foucar, N. Kimmel, P. Holl, B. Rudek, B. Erk, A. Hömke, C. Reich, D. Pietschner, G. Weidenspointner, L. Strüder, G. Hauser, H. Gorke, J. Ullrich, I. Schlichting, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K. Kühnel, R. Andritschke, C. Schröter, F. Krasniqi, M. Bott, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, H. N. Chapman, and J. Hajdu, “Single mimivirus particles intercepted and imaged with an X-ray laser,” Nature 470, 78 (2011). 4. A. Authier, “Dynamical theory of X-ray diffraction,” International Tables for Crystallography B, 534 (2006). 5. G. Thorkildsen and H. B. Larsen, “X-ray diffraction in perfect t × l crystals. Rocking curves,” Acta Cryst A55, 840 (1999). 6. G. Gouesbeta, J. A. Lockb, and G. Gréhana, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectr. Rad. Transfer 112, 1 (2011). 7. D. Rupp (TU Berlin, 2013), http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/3761 8. C. Bostedt, E. Eremina, D. Rupp, M. Adolph, H. Thomas, M. Hoener, A. R. B. de Castro, J. Tiggesbäumker, K.H. Meiwes-Broer, T. Laarmann, H. Wabnitz, E. Plönjes, R. Treusch, J. R. Schneider, and T. Möller, “Ultrafast X-Ray Scattering of Xenon Nanoparticles: Imaging Transient States of Matter,” Phys. Rev. Lett. 108, 093401 (2012). 9. L. Méès, G. Gouesbet, and G. Gréhan, “Interaction between femtosecond pulses and a spherical microcavity: internal fields,” Opt. Commun. 199, 33 (2001). 10. L. Méès, G. Gouesbet, and G. Gréhan, “Transient internal and scattered fields from a multi-layered sphere illuminated by a pulsed laser,” Opt. Commun. 282, 4189 (2009). 11. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998). 12. I. Robinson, F. Pfeiffer, I. Vartanyants, Y. Sun, and Y. Xia, "Enhancement of coherent X-ray diffraction from nanocrystals by introduction of X-ray optics," Opt. Express 11, 2329 (2003). 13. G. J. Williams, H. M. Quiney, B. B. Dhal, C. Q. Tran, K. A. Nugent, A. G. Peele, D. Paterson, and M. D. de Jonge, “Fresnel Coherent Diffractive Imaging,” Phys. Rev. Lett. 97, 025506 (2006). 14. D. J. Vine, G. J. Williams, B. Abbey, M. A. Pfeifer, J. N. Clark, M. D. de Jonge, I. McNulty, A. G. Peele, and K. A. Nugent, “Ptychographic Fresnel coherent diffractive imaging,”. Phys. Rev. A 80, 063823 (2009). 15. X. Li, C.-Y. Shew, L. He, F. Meilleur, D. A. A. Myles, E. Liu, Y. Zhang, G. S. Smith, K. W. Herwig, R. Pynn, and W.-R. Chen, “Scattering functions of Platonic solids,” J. Appl. Cryst. 44, 545 (2011). 16. H. Kogelnik, Theory of Optical Waveguides (Springer Verlag, 1988). 17. C. Xiao and M. G. Rossmann, “Structures of giant icosahedral eukaryotic dsDNA viruses,” Current Opinion in Virology 1, 101 (2011). 18. P. Thibault, V. Elser, C. Jacobsen, D. Shapiro, and D. Sayre, “Reconstruction of a yeast cell from X-ray diffraction data,” Acta Cryst. A62, 248 (2006). 19. Johnson, “Notes on Green’s functions in inhomogeneous media” (MIT, 2011), http://math.mit.edu/~stevenj/18.303/inhomog-notes.pdf 20. S. M. Rao, D. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenna Propagat. 30, 409 (1982). 21. H. Reid (MIT, 2012), http://math.mit.edu/~stevenj/18.369/BEMTalk.20120318.pdf. 22. Y. Han, Z. Cui, and W. Zhao, “Scattering of Gaussian beam by arbitrarily shaped particles with multiple internal inclusions,” Opt. Express 20, 718 (2012). 23. B. Momeni, M. Badieirostami, and A. Adibi, “Accurate and efficient techniques for the analysis of reflection at the interfaces of three-dimensional photonic crystals,” JOSA B 24, 2957 (2007). 24. M. P. Seah, S. J. Spencer, F. Bensebaa, I. Vickridge, H. Danzebrink, M. Krumrey, T. Gross, W. Oesterle, E. Wendler, B. Rheinländer, Y. Azuma, I. Kojima, N. Suzuki, M. Suzuki, S. Tanuma, D. W. Moon, H. J. Lee, H. M. Cho, H. Y. Chen, A. T. S. Wee, T. Osipowicz, J. S. Pan, W. A. Jordaan, R. Hauert, U. Klotz, C. van der Marel, M. Verheijen, Y. Tamminga, C. Jeynes, P. Bailey, S. Biswas, U. Falke, N. V. Nguyen, D. ChandlerHorowitz, J. R. Ehrstein, D. Muller, and J. A. Dura, “Critical review of the current status of thickness measurements for ultrathin SiO2 on Si Part V: Results of a CCQM pilot study,” Surface and Interface Analysis 36, 1269 (2004). 25. R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, “Ultrafast pulse interactions with two-level atoms,” Phys. Rev. A, 52, 3082 (1995). 26. K. J. Hebert, S. Zafar, E. A. Irene, R. Kuehn, T. E. McCarthy, and E. K. Demirlioglu, “Measurement of the refractive index of thin SiO2 films using tunneling current oscillations and ellipsometry,” Appl. Phys. Lett. 68, 266 (1996). 27. R-J Zhang, Y-M Chen, W-J Lu, Q-Y Cai, Y-X Zheng, and L-Y Chen, “Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix,” Appl. Phys. Lett. 95, 161109 (2009). 28. M. Quniten, “Limitations of Mie’s Theory – Size and Quantum Size Effects in Very Small Nanoparticles” in Optical Properties of Nanoparticle Systems: Mie and beyond (Wiley VCH, 2011). 29. T. van Buuren, L. N. Dinh, L. L. Chase, W. J. Siekhaus, and L. J. Terminello, “Changes in the Electronic Properties of Si Nanocrystals as a Function of Particle Size,” Phys. Rev. Lett. 80, 3803 (1998). 30. A. Zimina, S. Eisebitt, W. Eberhardt, J. Heitmann, and M. Zacharias, “Electronic structure and chemical environment of silicon nanoclusters embedded in a silicon dioxide matrix,” Appl. Phys. Lett. 88, 163103 (2006). 31. L. Šiller, S. Krishnamurthy, L. Kjeldgaard, B. R. Horrocks, Y. Chao, A. Houlton, A. K. Chakraborty, and M. R. C. Hunt, “Core and valence exciton formation in x-ray absorption, x-ray emission and x-ray excited optical luminescence from passivated Si nanocrystals at the Si L2,3 edge,” J. Phys.: Condens. Matter 21, 095005 (2009). 32. L. Landt, K. Klünder, J. E. Dahl, R. M. K. Carlson, T. Möller, and C. Bostedt, “Optical Response of Diamond Nanocrystals as a Function of Particle Size, Shape, and Symmetry,” Phys. Rev. Lett. 103, 047402 (2009). 33. N. Majer, K. Ludge, and E. Scholl, “Maxwell-Bloch approach to four-wave mixing in quantum dot semiconductor optical amplifiers,” Numerical Simulation of Optoelectronic Devices (NUSOD), 11th International Conference on, 153 (2011). 34. M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau,Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nature Communications 4, 2953 (2013). 35. N. Rohringer, D. Ryan, R. A. London, M. Purvis, F. Albert, J. Dunn, J. D. Bozek, C. Bostedt, A. Graf, R. Hill, S. P. Hau-Riege, and J. J. Rocca, “Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray freeelectron laser,” Nature 481, 10721 (2012). 36. I. R. Al’miev, O. Larroche, D. Benredjem, J. Dubau, S. Kazamias, C. Möller, and A. Klisnick, “Dynamical Description of Transient X-Ray Lasers Seeded with High-Order Harmonic Radiation through Maxwell-Bloch Numerical Simulations,” Phys. Rev. Lett. 99, 123902 (2007). 37. F. Tissandier, S. Sebban, J. Gautier, Ph. Zeitoun, E. Oliva, A. Rousse, and G. Maynard, “Three-dimensional Maxwell-Bloch calculation of the temporal profile of a seeded soft x-ray laser pulse,” Appl. Phys. Lett. 101, 251112 (2012). 38. A. Taflove and S. C. Hangess, Computational Electrodynamics (Artech House, 2000). 39. B. Rupp (2009), http://www.ruppweb.org/Xray/comp/scatfac.htm. 40. P. P. Ewald, “Zur Begründung der Kristalloptik, Teil III: Die Kristalloptik der Röntgenstrahlen,” Annalen der Physik 359, 557 (1917). 41. C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Nonlinear finite-difference time-domain method for the simulation of anisotropic, χ, and χ optical effects,” Journal of Lightwave Technology 24, 624 (2006). 42. L. Cheng and D. Y. Kim, “Differential imaging in coherent anti-Stokes Raman scattering microscopy with LaguerreGaussian excitation beams,” Opt. Express 15(16), 10123 (2007). 43. B. T. Draine and P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11, 1491 (1994). 44. M. A. Yurkina and A. G. Hoekstrac, “The discrete-dipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234 (2011). 45. M. A. Yurkina and M. Kahnert, “Light scattering by a cube: Accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 123, 176 (2013). 46. B. Rupp, Biomolecular Crystallography (Garland Science, 2010). 47. J. Drenth, “Basic diffraction physics,” International Tables for Crystallography F, 52 (2006). 48. H. Liu, B. K. Poon, D. K. Saldin, J. C. H. Spence, and P. H. Zwart, “Three-dimensional single-particle imaging using angular correlations from X-ray laser data,” Acta Cryst. A69, 365 (2013). 49. J. C. H. Spence, U. Weierstall, and H. N. Chapman, “X-ray lasers for structural and dynamic biology,” Rep. Prog. Phys. 75, 102601 (2012). 50. X. Yan, N. H. Olson, J. L. Van Etten, M. Bergoin, M. G. Rossmann, and T. S. Baker, “Structure and assembly of large lipid-containing dsDNA viruses,” Nature Structural Biology 7, 101 (2000). 51. M. V. Cherrier, V. A. Kostyuchenko, C. Xiao, V. D. Bowman, A. J. Battisti, X. Yan, P. R. Chipman,T. S. Baker , J. L. Van Etten, and M. G. Rossmann, “An icosahedral algal virus has a complex unique vertex decorated by a spike,” PNAS 106, 11085 (2009). 52. Swiss Institute of Bioinformatics, “Virion”, http://viralzone.expasy.org/all_by_protein/885.html 53. C. Xiao and M. G. Rossmann, “Structures of giant icosahedral eukaryotic dsDNA viruses,” Current Opinion in Virology 1, 101 (2011). 54. F. Merzel and J. C. Smith, “Is the first hydration shell of lysozyme of higher density than bulk water?” PNAS 99, 5378 (2002). 55. T. Søndergaard and K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688 (2000). 56. M. G. Rossmann, M. C. Morais, P. G. Leiman ,and W. Zhang, “Combining X-Ray Crystallography and Electron Microscopy,” Structure 13, 355. 57. M. Vulović, R. B.G. Ravelli, L. J. van Vliet, A. J. Koster, I. Lazić, U. Lücken, H. Rullgård, O. Öktem, B. Rieger, “Image formation modeling in cryo-electron microscopy,” J. Struct. Biol. 183, 19 (2013). 58. F. Fogolari, A. Brigo, and H. Molinari, “The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology,” J. Mol. Recognit. 15, 377 (2002). 59. J. Gruber, A. Zawaira, R. Saunders, C. P. Barrett, and M. E. M. Noble, “Computational analyses of the surface properties of protein-protein interfaces,” Acta Cryst. D63, 50 (2007). 60. Z. Shang and F. J. Sigworth, “Hydration-layer models for cryo-EM image simulation,” J. Struct. Biol. 180, 10 (2012). 61. H. Liu, B. K. Poon, A. J. E. M. Janssen, and P. H. Zwart, “Computation of fluctuation scattering profiles via three-dimensional Zernike polynomials,” Acta Cryst. A68, 561 (2012). 62. V. Elser, “Strategies for processing diffraction data from randomly oriented particles,” Ultramicroscopy 111, 788 (2011). 63. N. Baddour, “Operational and convolution properties of three-dimensional Fourier transforms in spherical polar coordinates,” JOSA A 27, 2144 (2010).
منابع مشابه
Open-source code for manifold-based 3D rotation recovery of X-ray scattering patterns
Single particle 3D imaging with ultrashort X-ray laser pulses is based on collecting and combining the information content of 2D scattering patterns of an object at different orientations. Typical sample-delivery schemes leave little or no room for controlling the orientations. As such, the orientation associated with a given snapshot should be estimated after the experiment. Here we present an...
متن کاملUltrasound-Promoted Synthesis and Characterization of Nanoparticles of Coordination Polymer [Co2(pydc)2(H2O)6]n.2nH2O
Nanoparticles of coordination polymer [Co2(pydc)2(H2O)6]n.2n H2O [H2pydc = pyridine-2,5-dicarboxylic acid] have been synthesized by sonochemical method and characterized by elemental analysis, infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, DLS particle size analysis and TGA/DTA. The structure of single crystalline coordination polymer developed from nanosized coo...
متن کاملFacilitating model reconstruction for single-particle scattering using small-angle X-ray scattering methods1
X-ray free-electron lasers generate intense femtosecond X-ray pulses, so that high-resolution structure determination becomes feasible from noncrystalline samples, such as single particles or single molecules. At the moment, the orientation of sample particles cannot be precisely controlled, and consequently the unknown orientation needs to be recovered using computational algorithms. This dela...
متن کاملOn X-ray scattering model for single particles, Part I: The legacy of protein crystallography
Emerging coherent X-ray scattering patterns of single particles have shown dominant morphological signatures in agreement with predictions of the scattering model used for conventional protein crystallography. The key question is if and to what extent these scattering patterns contain volumetric information, and what model can retrieve it. The scattering model of protein crystallography is vali...
متن کاملThe X-ray Transform and its Application in Nano Crystallography
In this article a review on the definition of the X- ray transform and some ofits applications in Nano crystallography is presented. We shall show that the X- raytransform is a special case of the Radon transform on homogeneous spaces when thetopological group E(n)- the Euclidean group - acts on ℝ2 transitively. First someproperties of the Radon transform are investigated then the relationship ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014